THE ALTERNATIVE ENERGY BLOG



Not only will atomic power be released, but someday we will harness the rise and fall of the tides and imprison the rays of the sun. Thomas A. Edison
FUEL CELL, GEO-THERMAL, HYDRO-ELECTRIC, SOLAR, WIND... OUR PROSPERITY AND INDEPENDENCE DEPEND UPON OUR ABILITY AND WILLINGNESS TO REPLACE FOSSIL FUELS WITH CLEAN, RENEWABLE SOURCES OF ENERGY.



Monday, March 28, 2011

UCLA researchers, colleagues at U.S. Energy Dept. make breakthrough in biofuel production


Story from UCLA Newsroom





By Wileen Wong Kromhout March 08, 2011 Category: Research


In the quest for inexpensive biofuels, cellulose proved no match for a bioprocessing strategy and genetically engineered microbe developed by researchers at the U.S. Department of Energy's BioEnergy Science Center.

Using consolidated bioprocessing, a team led by UCLA's James Liao for the first time produced isobutanol directly from cellulose. The team's work, published online in the journal Applied and Environmental Microbiology, represents across-the-board savings in processing costs and time. In addition, isobutanol is a higher grade of alcohol than ethanol.

"Unlike ethanol, isobutanol can be blended at any ratio with gasoline and should eliminate the need for dedicated infrastructure in tanks or vehicles," said Liao, the Chancellor's Professor of Chemical and Biomolecular Engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "Plus, it may be possible to use isobutanol directly in current engines without modification."

Compared to ethanol, higher alcohols such as isobutanol are better candidates for gasoline replacement because they have an energy density, octane value and Reid vapor pressure — a measurement of volatility — that is much closer to gasoline, Liao said.

While cellulosic biomass like corn stover and switchgrass is abundant and cheap, it is much more difficult to utilize than corn and sugar cane. This is due in large part because of recalcitrance, or a plant's natural defenses to being chemically dismantled.

Adding to the complexity is the fact biofuel production that involves several steps — pretreatment, enzyme treatment and fermentation — is more costly than a method that combines biomass utilization and the fermentation of sugars to biofuel into a single process.

To make the conversion possible, Liao, UCLA postdoctoral researcher Wendy Higashide, and Yongchao Li and Yunfeng Yang of Oak Ridge National Laboratory had to develop a strain of Clostridium celluloyticum, a native cellulose-degrading microbe, that could synthesize isobutanol directly from cellulose.

"This work is based on our earlier work at UCLA in building a synthetic pathway for isobutanol production," Liao said. While some Clostridium species produce butanol, these organisms typically do not digest cellulose directly. Other Clostridium species digest cellulose but do not produce butanol. None produce isobutanol, an isomer of butanol. "In nature, no microorganisms have been identified that possess all of the characteristics necessary for the ideal consolidated bioprocessing strain, so we knew we had to genetically engineer a strain for this purpose," Li said.

While there were many possible microbial candidates, the research team ultimately chose Clostridium cellulolyticum, which was originally isolated from decayed grass. The researchers noted that their strategy exploits the host's natural cellulolytic activity and the amino acid biosynthetic pathway and diverts its intermediates to produce higher alcohol than ethanol.

The researchers also noted that Clostridium cellulolyticum has been genetically engineered to improve ethanol production, and this has led to additional, more detailed research. Clostridium cellulolyticum has a sequenced genome available through the U.S. Department of Energy's Joint Genome Institute. This proof-of-concept research sets the stage for studies that will likely involve genetic manipulation of other consolidated bioprocessing microorganisms.

This work was supported in part by the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (ORNL) and by the UCLA–DOE Institute for Genomics and Proteomics. The BESC is one of three bioenergy research centers established by the Energy Department's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from non-food plant fiber, cost-effective on a national scale. The centers are led by ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin–Madison, in partnership with Michigan State University. The University of Tennessee–Battelle manages ORNL for the DOE's Office of Science.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

No comments:

Post a Comment